

PressureText: Pressure Input for
Mobile Phone Text Entry

Abstract

Pressure sensitive buttons are appealing for reducing

repetitive tasks such as text entry on mobile phone

keypads, where multiple key presses are currently

necessary to record an action. We present

PressureText, a text-entry technique for a pressure

augmented mobile phone. In a study comparing

PressureText to MultiTap, we found that despite limited

visual feedfback for pressure input, users overall

performed equally well with PressureText as with

MultiTap. Expertise was a determining factor for

improved performance with PressureText. Expert users

showed a 33.6% performance gain over novices.

Additionally, expert users were 5% faster on average

with PressureText than MultiTap, suggesting that

pressure input is a valuable augmentation to mobile

phone keypads.

Keywords

Pressure input, multi-level button, mobile phone text-

entry.

ACM Classification Keywords

H.5.2 Input devices and strategies

David C. McCallum

University of Manitoba

Computer Science

Winnipeg, Canada

dmccallum9@gmail.com

Edward Mak

University of Manitoba

Computer Science

Winnipeg, Canada

ed.mak.is@gmail.com

Pourang Irani

University of Manitoba

Computer Science

Winnipeg, Canada

irani@cs.umanitoba.ca

Sriram Subramanian

University of Bristol

Computer Science

Bristol, UK

sriram@cs.bris.ac.uk

Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, MA, USA

ACM 978-1-60558-246-7/09/04.

Introduction

Recent studies have demonstrated the benefits of using

pressure sensitive input. Researchers have integrated

pressure sensors into existing devices [1,2,5,7],

proposed new pressure-based techniques [3] and have

explored methods for overcoming some of the

limitations with pressure input [6]. What is particularly

appealing about pressure interaction is the ability to

easily select from a large number of input states

[1,3,5,7].

One application area that can benefit from pressure

interaction is mobile phone text entry. Most commercial

mobile phones assign several alphanumeric characters

to each key. For example, the two key also has the

characters d, e, and f assigned to it. In the standard

MultiTap technique, users press a button multiple times

to select the desired character. An average phrase of

seven words requires nearly 70 key presses with

MultiTap [3]. However, applying pressure interactions

to text entry is challenging. First, prior pressure based

techniques require displaying full pressure values, a

task that is difficult to do on all mobile displays [5,7].

Second, the most effective pressure selection

techniques consume at least 1 sec for each selection

[5,7], which is inappropriate for mobile text-entry. We

addressed these challenges in this paper.

We present PressureText, a technique that uses

pressure input for text entry on the standard 12-button

mobile phone keypad. In PressureText, each button on

the keypad is a sensor capable of producing a range of

pressure values. PressureText maps pressure ranges to

each of the characters on a key (Figure 1). A soft press

invokes the first character, a medium press the second

and a firm press the third character. A firm press with a

short dwell invokes the fourth character on keys

containing four characters.

We describe the design of PressureText and the results

of an experiment that provide insight into some of the

favorable PressureText design decisions. Our results

suggest that accurate and rapid text-entry with

pressure input is possible after repeated exposure.

Figure 1. Left: A user applies varying amounts of pressure to

select a letter. Right: the letter c requires more force than a.

Pressure Text

To harness the potential of pressure for text entry, we

consider the discretization of the pressure space,

pressure control, and character selection.

Discretization

The choice of discretization function plays a key role in

reducing error rates [7]. We made use of the entire

pressure space, which has led to a discretization

function based on a logarithmic function along with a

debouncing factor (explained below). In the logarithmic

function, the lower boundary of each level is defined as

logb(level number), where the level number ranges

from 1 to 3 (at most 3 levels on each key) and b is the

log base, which we vary between 2 and 3.15. Higher

values of b allocate larger amounts of space to the

lower pressure levels.

Debouncing

Pressure based interactions suffer from inadvertent

jitters or crossings from the users’ fingers or hand. To

reduce these effects Shi et al. proposed the use of a

fisheye function to “lock” the user onto a specific

pressure level [7]. Prior studies have shown that the

fisheye function can outperform other forms of

discretization functions and reduce errors [7]. We

implemented a debouncing algorithm with a similar

effect. We set thresholds at the boundaries between

adjacent levels, to prevent oscillation between them. To

cross from one level to the next, the pressure values

must not only cross the boundary, but also the

threshold surrounding it. In our experiments the

threshold was set to 10% of the level size, in pressure

units.

In Figure 2 we depict the debouncing thresholds and

the effect of applying pressure when moving from one

level to the next. The dark lines are thresholds. The

shaded area is the currently selected level, including its

debouncing threshold. Debouncing operates similar to

the fisheye in [7] but also tailors the radius of the

fisheye proportionally to the amount of pressure

allotted to a level.

Figure 2. Debouncing visualization. Shaded area shows the

currently selected level along with its threshold. The triangle

represents the pressure level. Left: Pressure within Level 1’s

threshold. Right: pressure beyond Level 1’s threshold,

selecting Level 2.

Letter Selection

A user scans a character by applying sufficient pressure

to reach the level for its associated character. Scanned

characters are displayed on the LCD. Prior work on

pressure input has relied on two design strategies for

controlling and invoking the selection of a pressure

level [5],[1]. The first design element consists of the

use of full visual feedback. Here, the user is shown

their current pressure value within the entire pressure

range. However, complete visual feedback is

impractical on mobile devices due to the small display

size. Furthermore, text entry requires rapid movements

that occur in a shorter time span than what is

accessible with complete visual feedback. A second

strategy for correctly invoking a selection involves the

use of a delimiter such as a rapid release of the

pressure sensor [5], a dwell on the appropriate

pressure level [1],[5], or the use of an auxiliary button

[1],[7]. In the context of text entry, an auxiliary button

is impractical and dwelling is significantly time

consuming. Based on prior results, we adapted quick

release to operate in a context suited for text entry.

Our mechanism scans to the character associated with

the inputted pressure value. When the button is

released, the character is typed. If the user applies

additional pressure to move to a higher level, we scan

to the associated character immediately. When the user

reduces the amount of pressure to move to a lower

level, we scan to the new character after a 250 ms

delay. This technique implicitly provides a partial

implementation for bi-directional pressure input, a

concern that is not entirely resolved [6]. Additionally,

this technique prevents users from scanning to the

lowest possible level whenever a button is released.

On a standard cell phone layout, there are two keys

with four characters: PQRS and WXYZ. Interacting with

four pressure levels is error-prone [7], and we restrict

all buttons to only three pressure levels. To enter the

fourth character, the user scans to the third character

and dwells for 750 ms. For example, to enter s, the

user scans to r and waits briefly. The scan and dwell

are considered to be two separate gestures. Once the

fourth character has been selected, the user cannot

scan to other characters. The character is typed when

the button is released.

Experiment

To evaluate our design choices for PressureText, we

compared it to MultiTap. MultiTap is still commonly

used on mobile phones (for various functions) and has

often served as a baseline for comparison to new

techniques in other studies [9].

Apparatus

We developed a pressure sensitive keypad (Figure 1).

The buttons were laid out with a spacing of 1.5cm

between columns and 1.75cm between rows. We used

pressure sensors (#IESF-R-5L from CUI Inc.) that could

measure a maximum pressure value of 1.5N and

provided 1024 pressure levels. The device was

connected to a desktop computer with USB.

Participants

Nine university students, three female and six male

volunteered for the experiment. Two were left-handed.

Participants received a small compensation. Five

participants used MultiTap as their default text-entry

mechanism on their cell phones and two others used

T9. The remainder did not use a cell phone for texting

very often. Of the nine participants, three were

considered experts as they had used the pressure

keypad more frequently than all the others. At most,

the experts obtained an additional hour of training with

the device through initial pilot studies.

Procedure

We employed the unconstrained text entry evaluation

paradigm [3,8]. In this method, the participant enters a

short phrase which appears on an auxiliary screen. The

LCD on the device showed the text as users typed it in.

The primary instruction was to proceed quickly and

accurately. In our study, participants entered phrases

from the corpus provided by Soukoreff and MacKenzie

[8]. We started and ended a timer when the user

entered the first and the last character, respectively.

The phrase completion time incorporates the time to

correct errors using the backspace key. Participants

had several practice trials before they began the

experiment. Participants were instructed to enter text

with only the thumb of their dominant hand. Text entry

included the use of the SPACE and BACKSPACE keys.

Design

Prior studies have reported asymmetric transfer effects

when comparing different text-entry mechanisms [9].

To prevent asymmetric transfer effects, we used a mix-

design that was carried over three different sessions,

each lasting an hour. The same participants performed

all three sessions. Consecutive sessions for any

participant were at least 24 hours apart. The first

session used a within-subjects design. Each participant

performed two blocks with both PressureText and

MultiTap. In the second session half the participants

(randomly selected) performed five blocks of MultiTap,

and the other half performed five blocks of

PressureText. In the third session, the participants who

performed MultiTap on the previous day performed the

experiment with PressureText, and vice versa.

Each block began with four practice phrases, followed

by ten different phrases selected randomly from the

corpus. Phrase selection for each of the two blocks

were done before the experiment, and presented in the

same order to each participant. All participants entered

identical phrases in the same order, the only difference

being which technique they used. In summary, the

design was as follows: 2 techniques × 9 participants ×

7 blocks × 10 phrases per block (excluding practice

phrases) = 1260 phrases in total. The entire

experiment lasted three hours over three days.

Results

Text Entry Speed

We use words-per-minute (WPM) as the primary

measure to evaluate text entry speed. WPM is

calculated as characters per second×60/5.

PressureText had a higher average WPM (9.1) than

MultiTap (8.64 WPM). Figure 3 shows average WPM for

expertise level and block number.

5

6

7

8

9

10

11

Novice Expert

W
P

M

Pressure
MultiTap

2

4

6

8

10

12

0 2 4 6 8

Block

W
P

M

Figure 3. Left: WPM for PressureText and Mutlitap; Right: learning curve

for PressureText and MultiTap for experts.

A univariate analysis of variance did not show a

significant difference in text entry speed for technique

(F1,14=.39, p=.542) but revealed a significant effect for

expertise (F1,14=5.24, p=0.037) on text entry speed.

The average text entry speed for experts was 9.83

WPM (sd=.101) and 7.8 WPM (sd=.075) for the novice

group. We did not observe any significant

technique×expertise interaction effect. We found that

performance improved over the number of blocks with

both techniques. The improvement over blocks was

particularly noticeable for experts (Figure 3, right).

Error Rates

We computed the average corrected error rate (the

user types an incorrect letter and then corrects it) as

suggested in [3]. Overall the average error rate with

PressureText was 8.6% compared to 2.7% with

MultiTap. Interestingly, we noticed a larger decrease in

error rates over multiple blocks with PressureText

(16.3% for the first block, compared to 8.7% in the 7th

block) than with MultiTap (5.4% in the 1st block, vs.

2.8% in the final block). We also observe that while

error rates with MultiTap begins to reach a plateau

between block 5 and block 7, error rates with

PressureText continue to decrease even over the last

few blocks. Characters that were placed in the middle

range of the discretization (b, k, x) resulted in the

highest number of errors.

Discussion

Our results suggest that PressureText is a suitable

augmentation to existing mobile phone keypads. To

facilitate text entry with pressure input, users need a

certain level of expertise. To facilitate learning,

pressure based keypads could be integrated with

simple games as seen in other environments. Based on

our results and performance in the experiment, we

suspect participants will be able to learn text entry with

pressure input fairly quickly.

As with other pressure based input technique, we also

observed a slightly higher number of errors with

pressure. We believe this factor was key in slowing

users’ typing speed and was primarily related to

expertise. However, this is not surprising, considering

that our setup is distinct from prior work in that we did

not provided any visual feedback, as in prior work

[1,4,5,7]. We only displayed the characters to be

entered and provided no assistance to the user with

respect to their current pressure values. Furthermore,

our results suggest that the highest amount of error

occurred in the middle letter of the pressure range, i.e.

entering the letter b was more error prone than

entering letter a or c. Improved designs would require

a refinement on the discretization function, the

debouncing thresholds or other potentially influential

variables to reduce the amount of errors.

Conclusion

We introduce PressureText, a pressure-based input

technique for the common task of entering text on

mobile phone keypads. Based on these constraints we

introduce various design elements, including a

debouncing function to reduce errors. Results show that

users have a marginally higher word per minute with

PressureText than MultiTap. We observe that

performance with pressure improves with expertise.

Reducing errors with pressure input will facilitate even

higher rates of text entry. In general pressure

augmentation is a valuable addition to current mobile

phone keypads. Pressure could be used in conjunction

with techniques such as T9 (to disambiguate word

selection) and for other tasks, such as browsing

documents, on mobile phones. In future work we will

continue to improve aspects of pressure text input, with

multi-modal feedback such as vibrotactile cues.

References

[1] Cechanowicz, J., Irani, P., Subramanian, S.,
Augmenting the mouse with pressure sensitive input.
Proc. CHI 2007, 1385-1394.

[2] Edward C. Clarkson, Shwetak N. Patel, Jeffrey S.

Pierce, and Gregory D. Abowd 2006, Exploring
Continuous Pressure Input for Mobile Phones, GVU
Tech. Report; GIT-GVU-06-20.
http://hdl.handle.net/1853/ 13138.

[3] MacKenzie, I. S., and Tanaka-Ishii, K. (Eds.) Text
entry systems: Mobility, accessibility, universality, pp.
332. San Francisco.

[4] Ramos, G. and Balakrishnan, R., Zliding: fluid
zooming and sliding for high precision parameter
manipulation. Proc. UIST 2005, 143-152.

[5] Ramos, G., Boulos, M., and Balakrishnan, R.,
Pressure widgets. Proc. CHI 2004, 487-494.

[6] Rekimoto, J. and Schwesig, C., PreSenseII: bi-
directional touch and pressure sensing interactions with

tactile feedback. Proc. CHI 2006 Extended Abstracts,
1253-1258.

[7] Shi, K., Irani, P., Gustafson, S., Subramanian, S.
(2008) PressureFish: a method to improve control of
discrete pressure-based input. Proc. CHI’08, 1295-
1298.

[8] Soukoreff, W., & MacKenzie, I.S. (2002). Text
entry for mobile computing: Models and methods,
theory and practice. Human-Computer Interaction, 17.
p. 147-198.

[9] Wigdor, D. and Balakrishnan, R. (2003) TiltText:
Using tilt for text input to mobile phones. Proc. UIST

’03, 81-90.

