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Abstract 

Pressure sensitive buttons are appealing for reducing 

repetitive tasks such as text entry on mobile phone 

keypads, where multiple key presses are currently 

necessary to record an action. We present 

PressureText, a text-entry technique for a pressure 

augmented mobile phone. In a study comparing 

PressureText to MultiTap, we found that despite limited 

visual feedfback for pressure input, users overall 

performed equally well with PressureText as with 

MultiTap. Expertise was a determining factor for 

improved performance with PressureText. Expert users 

showed a 33.6% performance gain over novices. 

Additionally, expert users were 5% faster on average 

with PressureText than MultiTap, suggesting that 

pressure input is a valuable augmentation to mobile 

phone keypads. 
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Introduction 

Recent studies have demonstrated the benefits of using 

pressure sensitive input. Researchers have integrated 

pressure sensors into existing devices [1,2,5,7], 

proposed new pressure-based techniques [3] and have 

explored methods for overcoming some of the 

limitations with pressure input [6]. What is particularly 

appealing about pressure interaction is the ability to 

easily select from a large number of input states 

[1,3,5,7]. 

One application area that can benefit from pressure 

interaction is mobile phone text entry. Most commercial 

mobile phones assign several alphanumeric characters 

to each key. For example, the two key also has the 

characters d, e, and f assigned to it. In the standard 

MultiTap technique, users press a button multiple times 

to select the desired character. An average phrase of 

seven words requires nearly 70 key presses with 

MultiTap [3]. However, applying pressure interactions 

to text entry is challenging. First, prior pressure based 

techniques require displaying full pressure values, a 

task that is difficult to do on all mobile displays [5,7]. 

Second, the most effective pressure selection 

techniques consume at least 1 sec for each selection 

[5,7], which is inappropriate for mobile text-entry. We 

addressed these challenges in this paper.  

We present PressureText, a technique that uses 

pressure input for text entry on the standard 12-button 

mobile phone keypad. In PressureText, each button on 

the keypad is a sensor capable of producing a range of 

pressure values. PressureText maps pressure ranges to 

each of the characters on a key (Figure 1).  A soft press 

invokes the first character, a medium press the second 

and a firm press the third character. A firm press with a 

short dwell invokes the fourth character on keys 

containing four characters. 

We describe the design of PressureText and the results 

of an experiment that provide insight into some of the 

favorable PressureText design decisions. Our results 

suggest that accurate and rapid text-entry with 

pressure input is possible after repeated exposure.  

  

Figure 1. Left: A user applies varying amounts of pressure to 

select a letter. Right: the letter c requires more force than a. 

Pressure Text 

To harness the potential of pressure for text entry, we 

consider the discretization of the pressure space, 

pressure control, and character selection. 

Discretization 

The choice of discretization function plays a key role in 

reducing error rates [7]. We made use of the entire 

pressure space, which has led to a discretization 

function based on a logarithmic function along with a 

debouncing factor (explained below). In the logarithmic 

function, the lower boundary of each level is defined as 

logb(level number), where the level number ranges 

from 1 to 3 (at most 3 levels on each key) and b is the 

log base, which we vary between 2 and 3.15. Higher 

values of b allocate larger amounts of space to the 

lower pressure levels.  



  

Debouncing 

Pressure based interactions suffer from inadvertent 

jitters or crossings from the users’ fingers or hand. To 

reduce these effects Shi et al. proposed the use of a 

fisheye function to “lock” the user onto a specific 

pressure level [7]. Prior studies have shown that the 

fisheye function can outperform other forms of 

discretization functions and reduce errors [7]. We 

implemented a debouncing algorithm with a similar 

effect. We set thresholds at the boundaries between 

adjacent levels, to prevent oscillation between them. To 

cross from one level to the next, the pressure values 

must not only cross the boundary, but also the 

threshold surrounding it. In our experiments the 

threshold was set to 10% of the level size, in pressure 

units.  

In Figure 2 we depict the debouncing thresholds and 

the effect of applying pressure when moving from one 

level to the next. The dark lines are thresholds. The 

shaded area is the currently selected level, including its 

debouncing threshold. Debouncing operates similar to 

the fisheye in [7] but also tailors the radius of the 

fisheye proportionally to the amount of pressure 

allotted to a level. 

 

Figure 2. Debouncing visualization. Shaded area shows the 

currently selected level along with its threshold. The triangle 

represents the pressure level. Left: Pressure within Level 1’s 

threshold. Right: pressure beyond Level 1’s threshold, 

selecting Level 2. 

Letter Selection 

A user scans a character by applying sufficient pressure 

to reach the level for its associated character. Scanned 

characters are displayed on the LCD. Prior work on 

pressure input has relied on two design strategies for 

controlling and invoking the selection of a pressure 

level [5],[1]. The first design element consists of the 

use of full visual feedback. Here, the user is shown 

their current pressure value within the entire pressure 

range. However, complete visual feedback is 

impractical on mobile devices due to the small display 

size. Furthermore, text entry requires rapid movements 

that occur in a shorter time span than what is 

accessible with complete visual feedback. A second 

strategy for correctly invoking a selection involves the 

use of a delimiter such as a rapid release of the 

pressure sensor [5], a dwell on the appropriate 

pressure level [1],[5], or the use of an auxiliary button 

[1],[7]. In the context of text entry, an auxiliary button 

is impractical and dwelling is significantly time 

consuming. Based on prior results, we adapted quick 

release to operate in a context suited for text entry.  

Our mechanism scans to the character associated with 

the inputted pressure value. When the button is 

released, the character is typed. If the user applies 

additional pressure to move to a higher level, we scan 

to the associated character immediately. When the user 

reduces the amount of pressure to move to a lower 

level, we scan to the new character after a 250 ms 

delay. This technique implicitly provides a partial 

implementation for bi-directional pressure input, a 

concern that is not entirely resolved [6]. Additionally, 

this technique prevents users from scanning to the 

lowest possible level whenever a button is released. 



  

On a standard cell phone layout, there are two keys 

with four characters: PQRS and WXYZ. Interacting with 

four pressure levels is error-prone [7], and we restrict 

all buttons to only three pressure levels. To enter the 

fourth character, the user scans to the third character 

and dwells for 750 ms. For example, to enter s, the 

user scans to r and waits briefly. The scan and dwell 

are considered to be two separate gestures. Once the 

fourth character has been selected, the user cannot 

scan to other characters. The character is typed when 

the button is released. 

Experiment 

To evaluate our design choices for PressureText, we 

compared it to MultiTap. MultiTap is still commonly 

used on mobile phones (for various functions) and has 

often served as a baseline for comparison to new 

techniques in other studies [9].  

Apparatus 

We developed a pressure sensitive keypad (Figure 1). 

The buttons were laid out with a spacing of 1.5cm 

between columns and 1.75cm between rows. We used 

pressure sensors (#IESF-R-5L from CUI Inc.) that could 

measure a maximum pressure value of 1.5N and 

provided 1024 pressure levels. The device was 

connected to a desktop computer with USB. 

Participants 

Nine university students, three female and six male 

volunteered for the experiment. Two were left-handed. 

Participants received a small compensation. Five 

participants used MultiTap as their default text-entry 

mechanism on their cell phones and two others used 

T9. The remainder did not use a cell phone for texting 

very often. Of the nine participants, three were 

considered experts as they had used the pressure 

keypad more frequently than all the others. At most, 

the experts obtained an additional hour of training with 

the device through initial pilot studies. 

Procedure 

We employed the unconstrained text entry evaluation 

paradigm [3,8]. In this method, the participant enters a 

short phrase which appears on an auxiliary screen. The 

LCD on the device showed the text as users typed it in. 

The primary instruction was to proceed quickly and 

accurately.  In our study, participants entered phrases 

from the corpus provided by Soukoreff and MacKenzie 

[8]. We started and ended a timer when the user 

entered the first and the last character, respectively. 

The phrase completion time incorporates the time to 

correct errors using the backspace key. Participants 

had several practice trials before they began the 

experiment. Participants were instructed to enter text 

with only the thumb of their dominant hand. Text entry 

included the use of the SPACE and BACKSPACE keys. 

Design 

Prior studies have reported asymmetric transfer effects 

when comparing different text-entry mechanisms [9]. 

To prevent asymmetric transfer effects, we used a mix-

design that was carried over three different sessions, 

each lasting an hour. The same participants performed 

all three sessions. Consecutive sessions for any 

participant were at least 24 hours apart. The first 

session used a within-subjects design. Each participant 

performed two blocks with both PressureText and 

MultiTap. In the second session half the participants 

(randomly selected) performed five blocks of MultiTap, 

and the other half performed five blocks of 

PressureText. In the third session, the participants who 

performed MultiTap on the previous day performed the 

experiment with PressureText, and vice versa. 



  

Each block began with four practice phrases, followed 

by ten different phrases selected randomly from the 

corpus. Phrase selection for each of the two blocks 

were done before the experiment, and presented in the 

same order to each participant. All participants entered 

identical phrases in the same order, the only difference 

being which technique they used. In summary, the 

design was as follows: 2 techniques × 9 participants × 

7 blocks × 10 phrases per block (excluding practice 

phrases) = 1260 phrases in total. The entire 

experiment lasted three hours over three days. 

Results 

Text Entry Speed 

We use words-per-minute (WPM) as the primary 

measure to evaluate text entry speed. WPM is 

calculated as characters per second×60/5. 

PressureText had a higher average WPM (9.1) than 

MultiTap (8.64 WPM). Figure 3 shows average WPM for 

expertise level and block number.  
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Figure 3. Left: WPM for PressureText and Mutlitap; Right: learning curve 

for PressureText and MultiTap for experts. 

A univariate analysis of variance did not show a 

significant difference in text entry speed for technique 

(F1,14=.39, p=.542) but revealed a significant effect for 

expertise (F1,14=5.24, p=0.037) on text entry speed. 

The average text entry speed for experts was 9.83 

WPM (sd=.101) and 7.8 WPM (sd=.075) for the novice 

group. We did not observe any significant 

technique×expertise interaction effect. We found that 

performance improved over the number of blocks with 

both techniques. The improvement over blocks was 

particularly noticeable for experts (Figure 3, right). 

Error Rates 

We computed the average corrected error rate (the 

user types an incorrect letter and then corrects it) as 

suggested in [3]. Overall the average error rate with 

PressureText was 8.6% compared to 2.7% with 

MultiTap. Interestingly, we noticed a larger decrease in 

error rates over multiple blocks with PressureText 

(16.3% for the first block, compared to 8.7% in the 7th 

block) than with MultiTap (5.4% in the 1st block, vs. 

2.8% in the final block). We also observe that while 

error rates with MultiTap begins to reach a plateau 

between block 5 and block 7, error rates with 

PressureText continue to decrease even over the last 

few blocks. Characters that were placed in the middle 

range of the discretization (b, k, x) resulted in the 

highest number of errors. 

Discussion 

Our results suggest that PressureText is a suitable 

augmentation to existing mobile phone keypads. To 

facilitate text entry with pressure input, users need a 

certain level of expertise. To facilitate learning, 

pressure based keypads could be integrated with 

simple games as seen in other environments.  Based on 

our results and performance in the experiment, we 

suspect participants will be able to learn text entry with 

pressure input fairly quickly. 



  

As with other pressure based input technique, we also 

observed a slightly higher number of errors with 

pressure. We believe this factor was key in slowing 

users’ typing speed and was primarily related to 

expertise. However, this is not surprising, considering 

that our setup is distinct from prior work in that we did 

not provided any visual feedback, as in prior work 

[1,4,5,7]. We only displayed the characters to be 

entered and provided no assistance to the user with 

respect to their current pressure values. Furthermore, 

our results suggest that the highest amount of error 

occurred in the middle letter of the pressure range, i.e. 

entering the letter b was more error prone than 

entering letter a or c. Improved designs would require 

a refinement on the discretization function, the 

debouncing thresholds or other potentially influential 

variables to reduce the amount of errors. 

Conclusion 

We introduce PressureText, a pressure-based input 

technique for the common task of entering text on 

mobile phone keypads. Based on these constraints we 

introduce various design elements, including a 

debouncing function to reduce errors. Results show that 

users have a marginally higher word per minute with 

PressureText than MultiTap. We observe that 

performance with pressure improves with expertise. 

Reducing errors with pressure input will facilitate even 

higher rates of text entry. In general pressure 

augmentation is a valuable addition to current mobile 

phone keypads. Pressure could be used in conjunction 

with techniques such as T9 (to disambiguate word 

selection) and for other tasks, such as browsing 

documents, on mobile phones. In future work we will 

continue to improve aspects of pressure text input, with 

multi-modal feedback such as vibrotactile cues. 
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