
LensMouse: Augmenting the Mouse with an Interactive
Touch Display

Xing-Dong Yang1, Edward Mak2, David McCallum2, Pourang Irani2, Xiang Cao3, Shahram Izadi3
1Dept. of Computing Science
University of Alberta, Canada

2Dept. of Computer Science
University of Manitoba, Canada

3Microsoft Research Cambridge
United Kingdom

xingdong@cs.ualberta.ca, ed.mak.is@gmail.com, {ummccal, irani}@cs.umanitoba.ca,
{xiangc, shahrami}@microsoft.com

ABSTRACT
We introduce LensMouse, a novel device that embeds a
touch-screen display – or tangible ‘lens’ – onto a mouse.
Users interact with the display of the mouse using direct
touch, whilst also performing regular cursor-based mouse
interactions. We demonstrate some of the unique capabili-
ties of such a device, in particular for interacting with auxil-
iary windows, such as toolbars, palettes, pop-ups and dia-
log-boxes. By migrating these windows onto LensMouse,
challenges such as screen real-estate use and window man-
agement can be alleviated. In a controlled experiment, we
evaluate the effectiveness of LensMouse in reducing cursor
movements for interacting with auxiliary windows. We also
consider the concerns involving the view separation that
results from introducing such a display-based device. Our
results reveal that overall users are more effective with
LenseMouse than with auxiliary application windows that
are managed either in single or dual-monitor setups. We
conclude by presenting other application scenarios that
LensMouse could support.

Author Keywords
Input devices, mouse with touch display.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

GENERAL TERMS
Design, Experimentation, Performance.

INTRODUCTION
The computer mouse is the established input device for
manipulating desktop applications. Although arguably per-
fect in many ways, products and research have demon-
strated the power in augmenting the mouse with new sens-
ing capabilities [6, 19, 39, 9, 20] – perhaps the most suc-

cessful being the scroll-wheel [20]. The fact that the mouse
is so central in most peoples’ everyday computing interac-
tions makes this a potentially rich design space to explore.
Predominately these explorations have focused on expand-
ing the input capabilities of the mouse [6, 19, 39, 20, 9, 35].
But why not output too?

In this paper we explore this very theme. We present a nov-
el mouse prototype augmented with a direct touch display,
which we call LensMouse. The display acts as a tangible
and multi-purpose auxiliary window – or lens – through
which users can view additional information without con-
suming screen real-estate on the user’s monitor. Equally
important is the provision of direct-touch input on the
LensMouse display. With a touch of a finger, users can di-
rectly interact with content on the auxiliary display.

LensMouse allows users to interact with and view auxiliary
digital content without needing to use a dedicated input
device, or indeed change their hand posture significantly.
We demonstrate a variety of uses for such a novel device,
including viewing and interacting with toolbars and palettes
for an application or game, previewing web pages and fold-
er contents, interacting with magnified primary screen con-
tent, pop-up dialog boxes, and performing touch gestures.

Figure 1 - LensMouse prototype showing an overview map
from a real-time strategy game.

Perhaps one of the main strengths of LensMouse is in deal-
ing with auxiliary windows, such as instant notifications,
color palettes, or navigation tools that occupy regions of the
primary screen. Whilst necessary for the user’s task, they
can consume precious real-estate and occlude parts of the
user’s primary workspace. This can result in additional
window management overhead to move or close the auxil-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10-15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2431

iary window. Additionally, users have to divert their mouse
cursor from their workspace over to the auxiliary window
to interact with it. This task can be time consuming particu-
larly when the user’s display is large. Pop-up auxiliary win-
dows can occasionally distract users, particularly when they
are not immediately of use, such as with notifications from
other applications on the desktop.

LensMouse can be used to ‘free up’ these auxiliary win-
dows from the primary screen, allowing them to be viewed
and interacted with readily on a dedicated screen that is
always within easy reach of the user. In this paper we pre-
sent a controlled experiment that demonstrates the utility of
LensMouse in dealing with the issues of auxiliary windows.
The study demonstrates that users can interact and view the
auxiliary display without extra cognitive or motor load; and
can readily interact with on-screen content without signifi-
cant mouse movements.

Our contributions in this paper are therefore: 1) a novel
input device prototype augmented with an interactive touch
display; 2) a solution to overcome challenges with auxiliary
windows; 3) a demonstration of some of the benefits of our
device through a user experiment; 4) a set of applications
and interactions that can benefit from such a device.

RELATED WORK
Adding a touch-enabled display onto a mouse follows a
long-standing research trend in augmenting mice with pow-
erful and diverse features. Many augmentations have been
successful such as the scroll-wheel which is now indispen-
sable for many tasks on today’s desktops [20]. Other aug-
mentations include extending the degrees-of-freedom of the
mouse [6, 19], adding pressure input [9, 35], providing mul-
ti-touch input [39], supporting bi-manual interactions [6,
25], and extending the controls on a mice to a secondary
device [25]. Our research prototype complements and ex-
tends this existing literature by considering a rich set of
both output and input functionalities on top of regular
mouse-based input.

On one level, LensMouse can be considered as a small
movable secondary display. There has been a great deal of
research on the use of and interactions with multiple desk-
top monitors. We highlight some of this research, as it is
relevant to our work.

Multi-display vs. single display interactions
While a decade ago most computers were controlled with a
single monitor, today dual-monitor setups are common, and
are leading to novel multi-display systems [10, 21]. An ad-
ditional monitor provides the user with more screen real
estate. However, users seldom extend a window across two
monitors. Instead, they distribute different tasks among
monitors [12]. With more screen space available, the in-
creased amount of mouse trips among displays becomes an
issue. Therefore, users tend to put tasks involving frequent
interactions on the primary monitor, while tasks that require
fewer interactions, such as checking email updates, are de-

legated to the second monitor [12, 14]. A quantitative result
by Bi et al. [7] confirmed that 71% of all mouse events in a
dual-monitor setup occur on the primary display.

The primary benefits of a secondary display include allow-
ing users to view applications, such as document windows
simultaneously or to monitor updates peripherally. For tasks
involving frequent switching between applications, dual-
monitor users are faster and have less workload than single-
monitor users [24, 36]. The literature in multi-monitor sys-
tems also reveals that users like to separate the monitors by
some distance instead of placing them in immediate prox-
imity [12]. One may believe that this could lead to visual
separation problems, where significant head movements are
required to scan for content across both displays.

A study by Tan et al. [37] in which participants were asked
to identify grammatical errors spread across two documents
each on a different monitor, showed that distance between
displays played a negligible role in task performance. They
found only small effects of visual separation when the sec-
ond display was placed far away from the main display.
This result was also supported by an earlier study revealing
that separating two monitors at a relatively long distance
(the full width of one monitor) did not slow down users’
access to information across both monitors [36]. These
findings on the negligible effects of visual separation sup-
port the concept of having a separate auxiliary display, such
as that on LensMouse, for dedicated information content.
There is also the additional advantage of direct-touch inter-
action with the content on LensMouse.

Multi-monitor setups also present several drawbacks, the
most significant being an increased amount of cursor
movement across monitors resulting in workload overhead
[34]. Alleviating this issue has been the focus of much re-
search as we highlight in the next section.

Minimizing mouse trips across monitors
There are many ways to support cross-display cursor
movement. Stitching is a technique commonly used by op-
eration systems (e.g. WindowsTM and MacOSTM). It warps
the cursor from the edge of one display to the edge of the
other. In contrast, Mouse Ether [4] offsets the cursor’s land-
ing position to eliminate wrapping effects introduced by
Stitching. Although both methods are effective [29], users
still need to make a substantial amount of cursor move-
ments to acquire remote targets. Object cursor [13] ad-
dresses this issue by ignoring empty space between objects.
Delphian Desktop [2] predicts the destination of the cursor
based on initial movement and rapidly ‘flies’ the cursor
towards its target. Although these techniques were designed
for single monitor conditions, they can be easily tailored for
multi-monitor setups. Head and eye tracking techniques
were proposed to position the cursor on the monitor of in-
terest [1, 11]. This reduces significant mouse trips but at the
cost of access to expensive tracking equipment. Benko et al.
propose to manually issue a command (i.e. a button click)
to ship the mouse pointer to a desired screen [3]. This re-

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2432

sults in bringing the mouse pointer close to the task but at
the cost of mode switching. The Mudibo system [15] shows
a copy of an interface such as a dialog box on every moni-
tor, as a result it does not matter which monitor the mouse
cursor resides on. Mudibo was found useful [16] but dis-
tributing redundant copies of information content across
multiple monitors introduces problems such as distracting
the user’s attention and wasting screen estate. Ninja cursors
[23] and its variants address this problem by presenting a
mouse cursor on each monitor. This solution is elegantly
simple but controlling multiple cursors with one mouse,
adds an extra overhead of having to return the cursor to its
original position on one monitor after using it for the other.

LENSMOUSE PROTOTYPE
We created our LensMouse prototype by attaching a touch-
enabled Smartphone (HTC touch) to the base of a USB
mouse (Figure 1). As miniaturized touch displays become
increasingly common and cheap, we can imagine such a
display being integrated at a lower cost.

The LensMouse display is tilted toward the user to improve
viewing angle. The display hosts a number of soft buttons,
including left and right buttons and a soft scroll-wheel. The
remaining space on the display allows application designers
to place auxiliary windows that would normally consume
screen real-estate on a desktop monitor.

Different types of auxiliary windows, such as toolbars, pal-
ettes, pop-ups and other notification windows, can be mi-
grated to the LensMouse display. Another class of auxiliary
windows that can be supported on LensMouse are overview
+ detail (or focus+context) views [30, 41]. Here the small
overview window can be displayed on the LensMouse to
provide contextual information. For example, map-based
applications can dedicate an overview window or a magni-
fying lens on the LensMouse (Figure 1). Overviews have
proven to be useful for a variety of tasks [18, 31].

Auxiliary windows displayed on the LensMouse are re-
ferred to as ‘lenses’. LensMouse can incorporate several
‘lenses’ simultaneously. To switch between different lenses,
a ‘lens-bar’ is displayed at the bottom of the display (Figure
1). Tapping on the lens-bar iterates through all the lenses.
Finally, since the LensMouse display is separated from the
user‘s view of the primary monitor, users are notified of
important updates on LensMouse by subtle audio cues.

KEY BENEFITS OF LENSMOUSE
In this section, we discuss how LensMouse addresses some
of the challenges present with auxiliary windows, multiple
monitors and other related work.

Reducing mouse trips
Auxiliary windows in particular palettes and toolbars often
float in-front of or to the side of the main application win-
dow. This maximizes the display area for the main applica-
tion window, but also leads to mouse travel back-and-forth
between windows. Operations with the LensMouse display

can be performed by directly touching the mouse screen,
eliminating the need to move the cursor away from the us-
er’s main working area to these auxiliary windows. For
example, selecting a new color in a paint palette or chang-
ing the brush width can be done by directly touching the
LensMouse screen without needing to move the mouse
away from the main canvas (Figure 2).

Figure 2 - LensMouse shows the floating color panel
window of a drawing application. This reduces window
management and minimizes on-screen occlusion.

Minimizing window management
Many applications such as graphics editors are often
crowded with small windows hosting various widgets such
as palettes, toolbars, and other dialog boxes. When the win-
dows occlude important content, they need to be closed or
relocated. The extra overhead in managing these windows
can be minimized with LensMouse. LensMouse shows one
window at a time. To switch to another, users simply tap on
the lens-bar. As a result, window management does not
incur mouse trips and only the current window of interest is
presented to the user at any given time.

Reducing occlusion
Certain applications rely heavily on auxiliary windows to
relay feedback or other information content to their users.
Designers typically resort to various strategies when dis-
playing these windows, since these are known to occlude
the main workspace and thus distract users from their main
tasks [5, 22]. In many cases, such as with notifications,
these windows will pop-up unexpectedly, thus taking the
users attention away from their tasks. With LensMouse,
such pop-ups can be displayed on the display of the mouse
and users could be alerted of their appearance through a
notification. By separating the unexpected pop-up windows
from the main display, unnecessary distractions and occlu-
sions are reduced.

Minimizing workspace “distortions”
To improve task performance researchers have proposed a
number of techniques that “distort” the user’s visual work-
space [26, 33]. For example, distorting target size, i.e. mak-
ing it larger, can improve targeting performance [26]. This
can be detrimental to the selection task if nearby targets are
densely laid out [26]. Instead of “distorting” the visual
workspace, with LensMouse the targets can be enlarged on
the mouse display for easier selection with the finger, leav-
ing the primary workspace unaffected. Other similar ef-

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2433

fects, such as fisheye distortions, can be avoided by leaving
the workspace intact and simply producing the required
effect on LensMouse. In a broad sense “distortions” could
also include operations such as web browsing that involves
following candidate links before finding the required item
of interest. Instead, previews of web links can be displayed
as thumbnail images on LensMouse, thus leaving the origi-
nal web page as is. Other such examples include panning
around maps to find items of interest, scrolling a document
or zooming out of a workspace. Such display alterations can
take place on LensMouse and thus leave the user’s primary
workspace intact. This has the benefit that users do not have
to spend extra effort to revert the workspace to its original
view.

EXPERIMENT
We have postulated that a primary benefit of LensMouse
consists of reducing mouse trips by allowing the user to
access contextual information with their fingertips. How-
ever, we also acknowledge the potential drawbacks of hav-
ing a display on LensMouse, such as the visual separation
from the primary display, smaller screen size, and occlusion
by the users’ hand. Prior studies on multiple monitor setups
do not show a significant impact of visual separation on
task performance [37, 16]. Such studies were carried out
with regular-sized monitors in vertical setups, e.g. monitors
stood in front of users. This leaves it unclear whether visual
separation has a significant impact on performance with
LensMouse, where a smaller display, which is more suscep-
tible to hand occlusion, is used almost in a horizontal setup.

To unpack these issues, we conducted a user study of the
LensMouse. A specific goal of this study was to evaluate
whether users are more effective at carrying out tasks when
part of the interface is relegated to LensMouse. We evalu-
ated LensMouse against single-monitor and dual-monitor
conditions. In all conditions, the monitor(s) were placed at a
comfortable distance from participants. In the single-
monitor condition, the entire task was carried out on a sin-
gle monitor. In the dual-monitor condition, the task was
visually distributed across two monitors with each monitor
slightly angled and facing the participants. The LensMouse
condition was similar to the dual-monitor setup, except that
the task was visually distributed across the main monitor
and LensMouse display.

Materials
The display on LensMouse had a size of 1.6×2.2 inch, and
ran at a resolution of 480×640. We used 22” Samsung LCD
monitors for both single and dual-monitor setups. Both
monitors ran at a resolution of 1680×1050, and were ad-
justed to be roughly equivalent in brightness to the display
on LensMouse. The study was implemented in Trolltech
QT, and was run on a computer with 1.8 GHz processor and
3GB memory.

A pilot study showed no difference between the mousing
capabilities of LensMouse and a regular mouse in perform-
ing target selection tasks. Therefore, we used LensMouse

for all conditions in place of a regular mouse to remove any
potential confounds caused by the mouse parameters. In the
non-LensMouse conditions, participants clicked on LensM-
ouse soft buttons to perform selection.

Participants
Fourteen participants (10 males and 4 females) between the
ages of 21 and 40 were recruited from a local university to
participate in this study. Participants were daily computer
users. All of our participants were right-handed users.

Task
To evaluate the various influencing factors, we designed a
cross-window pointing task for this experiment. This task is
analogous to that employed by users of text or graphics
editing programs and is comprised of two immediate steps.
The first step requires participants to click a button on the
main screen to invoke a text instruction (Figure 3-left). Fol-
lowing the instruction, participants performed the second
step by clicking one of the tool buttons in a tool palette
window, corresponding to that instruction (Figure 3-right).
Cross-window pointing is representative of common object-
attribute editing tasks in which users must first select an
object (by either highlighting or clicking it) and then visu-
ally searching for the desired action in an auxiliary window
that hosts the available options. Examples of such a task
include changing the font or color of selected text in Micro-
soft Word, or interacting with the color palettes in Adobe
Photoshop.

Figure 3 –The instruction (right) bold showed only after
participants successfully clicked the instruction button
(left). It instructs to click on the bold icon in the tool pal-
ette window.

At the beginning of the task, an instruction button was
placed in a random location on the main screen. Participants
move the mouse cursor to click the button to reveal a text
instruction. The text instruction is chosen randomly from an
instruction pool, such as Bold, Italic, Und, etc. Following
the instruction, participants picked the matching tool icon
by clicking or tapping directly (in the LensMouse condi-
tion) on the tool palette. Upon selection, the next instruction
button showed up in a different location. This was repeated
over multiple trials and conditions.

Design
The experiment employed a 4×2 within-subject factorial
design. The independent variables were Display Type:
Toolbox (TB), Dual-monitor (DM), Context Window (CW)

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2434

and LensMouse (LM)); and Number of Icons: 6 icons and
12 icons.

Toolbox (TB) - The Toolbox condition simulated the most
frequent case in which auxiliary windows are docked in a
region on the main display. In most applications the user
has control of placing the window but by default these ap-
pear toward the edges of the display. In the Toolbox condi-
tion, we placed the tool palette at the bottom-right corner of
the screen, such that instruction buttons would always be
visible.

Dual-monitor (DM) - In the dual-monitor condition, the
tool palette was shown on a second monitor that was placed
to the right of the main screen showing the instruction but-
tons. To determine the location of the tool palette, we ob-
served five dual-monitor users in a research lab at a local
university, and found that most of them placed small appli-
cation windows, such as instant messaging or media player
windows, at the center of the second monitor for easy and
rapid access. Tan et al’s [37] study found no significant
effect of document location on the second monitor. Based
on these two factors, we thus placed the tool palette at the
center of the second screen.

Context Window (CW) - Certain modern applications, such
as Microsoft Word 2007, invoke a contextual pop-up pal-
ette or toolbar near the cursor when an item is selected. For
example, in Word when text is highlighted, a semi-
transparent ‘text toolbar’ appears next to the text. Moving
the mouse over the toolbar makes it fully opaque and inter-
active. Moving the cursor away from the toolbar causes it to
fade out gradually until it disappears and is no longer avail-
able. We created a Context Window condition to simulate
such an interaction. Once the user clicked on an instruction
the tool palette appeared below the mouse cursor and dis-
appeared when the selection was completed. We did not use
fade-in/fade-out transitions as this would impact perform-
ance times. We also maintained the physical size of the
palette to be the same as in all other conditions.

LensMouse (LM) - In the LensMouse condition, the tool
palette was shown using the full display area of the mouse.
Unlike the other three conditions, participants made selec-
tions on the palette using a direct-touch finger tap gesture.
On the LensMouse we can create palettes of different sizes.
The literature suggests that for touch input icons less than
9mm can degrade performance [32, 40]. Based on the size
of our display, we can have palettes containing upto 18
icons on the LensMouse. We however restricted our study
to palettes of 6 and 12 icons, as these numbers would be the
practical limits on what users could expect to have on a
toolbar. The physical size of tool palette remained constant
across all displays conditions (monitors and LensMouse).

In the cross-window pointing task, after the users first click
on the instruction button using the soft button on LensM-
ouse, the rest of the display is partially occluded by the
palm. We deliberately wanted this to happen as it resembles

many real world scenarios in which the LensMouse display
could indeed be occluded by the palm.

The Number of Icons was selected in a grid arrangement
consisting of 2×3 or 3×4 icons (6 and 12 icons respec-
tively). With 6 icons the targets were 20.5×18.7 mm and
with 12 icons the targets were 13.7×14 mm.

In each trial, participants performed tasks in one of each
Display Type × Number of Icons combination. The experi-
ment consisted of 8 blocks, each consisting of 18 trials. The
Display Type factor was partially counter balanced among
participants. The experimental design can be summarized
as: 4 Display Types × 2 Number of Icons × 8 Blocks × 18
Repetitions × 14 Participants = 16128 data points in total.

Dependent measures included the number of errors and the
average task completion time. Task completion time was
recorded as the time elapsed from a click on the instruction
button to a click on the corresponding icon on the tool pal-
ette. An incorrect selection occurred when the participant
clicked on the wrong icon in the palette.

Procedure
At the start of each trial, an instruction button was placed
randomly in one of three predefined regions indentified by
the distance to the bottom-right corner of the display where
the Toolbox is placed, and also near where LensMouse is
likely to be placed, as shown in Figure 4. The three dis-
tances were selected such that the instruction item could be
either close or far away from LensMouse. The items in the
Near region were between 168~728 pixels away from the
bottom-right corner; the Middle region 728~ 1288 pixels;
and the Far region 1288~1848 pixels. This would allow us
to test the impact of visual separation if it was present.

Figure 4 – Instruction buttons were placed in 3 regions.
The regions demarcated areas based on the distance to
the bottom-right corner of the screen.

Prior to starting the experiment, participants were shown
the LensMouse prototype and its features, and were also
allowed several practice trials in each condition. Partici-
pants were asked to finish the task as fast and as accurately
as possible. A break of 15 seconds was enforced at the end
of each block of trials. The entire experiment lasted slightly
under 60 minutes. Participants filled out a post-experiment
questionnaire upon completion.

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2435

Results and discussion
The collected data was analyzed using a repeated measure
ANOVA test and Tamhane post-hoc pair-wise tests.

Task completion time
Task completion time was defined as the time taken to
make a selection in the tool palette after an instruction but-
ton was clicked. Our analysis of completion time does not
include trials in which an error was made during the tool
selection. The overall average completion time was 1245
ms. ANOVA yielded a significant effect of Display Type
(F3,39 = 50.87, p < 0.001) and Number of Icons (F1,13 =
10.572, p < 0.01). Figure 5 shows average completion time
for each Display Type by Number of Icons. We found no
interaction effects on Display Type × Number of Icons (F3,39
= 0.262, p = 0.852).

Performance with LensMouse (1132 ms, s.e. 6.5 ms) was
significantly faster than with the Dual-monitor (1403 ms,
s.e. 6.4 ms) and the Toolbox (1307 ms, s.e. 6.5 ms) condi-
tions. Interestingly, post-hoc pair-wise comparisons showed
no significant difference between the Context Window
(1141 ms, s.e. 6.4 ms) and LensMouse (p = 0.917). As ex-
pected, it took participants longer to select from the palette
of size 12 (1292 ms, s.e. 4.6 ms) than from the palette of
size 6 (1200 ms, s.e. 4.6 ms). This is not surprising consid-
ering that icons were smaller on the palette of 12 items.

Figure 5 - Task completion time vs. Display Type and Number
of Icons. Error bars represent +/- 2 standard error.
As expected, techniques requiring significant mouse trips,
such as the Dual-monitor and Toolbox, took users longer to
finish the task. This is consistent with our understanding of
targeting performance based on Fitts’ Law [28]. LensMouse
performed as fast as the Context Window. This clearly
shows that even though LensMouse may be affected by
visual separation, this was compensated by the advantage of
minimizing mouse trips, and resulted in a net gain com-
pared to the Toolbox and Dual-monitor setups.

Number of errors
Errors were recorded when participants made a wrong se-
lection in the palette. The overall average error rate was
1.4%. Analysis showed no main effect of Display Type
(F3,39 = 1.708, p = 0.181) or Number of Icons (F1,13 =
0.069, p = 0.797) on error rate. Neither did we find any
interaction effects for Display Type × Number of Icons

(F3,39 = 1.466, p = 0.239). All techniques scored error rates
that were lower than 2%. Even though not statistically sig-
nificant, LensMouse exhibited more errors (1.7%, s.e. 0.02)
than the other conditions. This was followed by the Dual-
monitor (1.5%, s.e. 0.02), Context Window (1.2%, s.e.
0.02), and Toolbox (1.2% s.e. 0.02). The error rate on
LensMouse was largely a result of imprecise selection with
fingertips, a known problem for touch displays [40], which
could be alleviated in both hardware and software.

Learning effects
We analyzed the learning effects captured by participant
performance for each of the display types. There was a sig-
nificant main effect on task completion for Block (F7,91 =
6.006, p < 0.01) but there was no significant interaction
effect for Block × Display Type (F21,273 = 1.258, p = 0.204)
or for Block × Number of Icons (F7,91 = 0.411, p = 0.893).
As can be seen in Figure 6 there is a steeper learning curve
for LensMouse and Context Window techniques. Post-hoc
analyses showed that with LensMouse, significant skill im-
provement happened between the first and the third block
(p < 0.001). But there was no significant learning after the
third block (all p > 0.31). Interestingly, a similar learning
pattern was found with the Context Window technique. On
the other hand, task completion time decreased almost line-
arly with the Dual-monitor and Toolbox techniques. But we
observed no significant skill improvements (all p > 0.75).

Figure 6 – Learning effects: Task completion time vs. block
number.

Although the results of LensMouse and Context Window
are similar, the learning effects between all techniques were
slightly different. The learning effects taking place in the
Context Window condition were in part due to getting fa-
miliar with different button/icon locations to reduce visual
search time. However, learning effects with LensMouse
were mainly due to the process of developing motor mem-
ory skills through finger selection. This was apparent in our
qualitative observations – participants were no longer look-
ing at LensMouse display after the 4th or 5th block of trials.

Effects of visual separation
Our experimental design accounted for visual separation
effects that would possibly be present with LensMouse. We
performed the analysis by looking at targeting performance

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2436

when targets were in one of the three regions Near, Middle,
and Far. There was no main effect of performance time for
visual separation with LensMouse (F2,26 = 1.883, p =
0.172). Nor did we find any main effect of visual separa-
tion on number of errors (F2,26 = 3.322, p = 0.052). Even
though not statistically significant, LensMouse exhibited
more errors in the Middle (2.2%, s.e. 0.04) and Far (1.9%,
s.e. 0.04) region than in the Near region (1%, s.e. 0.04).

Subjective preference
The post-experiment questionnaire filled out by all the par-
ticipants show that the users welcomed the unique features
provided by LensMouse. They also indicated a high level of
interest in using such a device if it were made commercially
available. All scores reported below are based on a 5-point
Likert scale, with 5 indicating highest preference.

The participants gave an average of 4 (5 is most preferred)
to LensMouse and Context Window as the two most pre-
ferred display types. These ratings were significantly higher
than the ratings for Toolbox (avg. 3) and Dual-monitor
(avg. 2). We noticed more people rating LensMouse at 5
(50%) than the Context Window (36%). The same trend in
average scores were obtained (LensMouse: 4, Context Win-
dow: 4, Toolbox: 3, and Dual-monitor: 2) in response to the
question: “how do you perceive the speed of each tech-
nique?” This is consistent with our quantitative results de-
scribed in the previous section. Additionally, participants
found LensMouse to be easy to use (3.9, 5 is easiest). The
score was just slightly lower than the Context Window (4.3)
but still higher than the Toolbox (3.1) and the Dual-monitor
(2.7). Finally, the participants gave LensMouse and Context
Window an average of 4 (5 is most control) in response to
“rate each technique for the amount of control available
with each”. The rating was significantly higher than the
rating of Toolbox (3) and Dual-monitor (3).

Overall, 85% of all our participants expressed the desire to
use LensMouse if it was available on the market. In addi-
tion, 92% of the participants felt that the display on
LensMouse would help them with certain tasks they per-
formed in their work, such as rapid icon selection. Finally,
70% of the participants saw themselves using LensMouse
when doing tasks in applications such as MS Word, Power-
Point, or even browsing the Internet. It is worth noting that
the current LensMouse is just a prototype, and could be
significantlly improved in terms of ergonomically. We will
discuss this issue later in the paper.

Preliminary qualitative evaluation with a strategy game
In addition to the quantitative experiment, we also have
begun to qualitatively test the LensMouse prototype with
Warcraft 3, a real-time strategy game. Whilst by no means a
full study, we used this opportunity to distill preliminary
user feedback of using LensMouse with a popular commer-
cial software product.

Three computer science students, all with at least 50 hours
of experience playing Warcraft 3, were invited to play the

game using LensMouse for forty-five minutes. With
LensMouse we implemented the ability to navigate around
the game map using the overview (Figure 1). Users could
simply tap on the overview with LensMouse to navigate the
overall game map. This has the effect of reducing mouse
movement between the main workspace and the overview
window.

Users required a brief period to get familiar with LensM-
ouse and to having a display on top of a mouse. User feed-
back supported our findings discussed earlier. Players were
able to navigate easily around the game map and found
LensMouse “exciting”. The gamers immediately saw an
advantage over their opponents without it. Upon completing
the game, participants offered useful suggestions such as
including hotkeys to trigger in-game commands or to rap-
idly view the overall status of the game. Such features can
be easily implemented in our prototype and would give
players who have access to LensMouse a significant advan-
tage over those without the device.

DISCUSSION
Our study shows that users can perform routine selection-
operation tasks faster using LensMouse than using a typical
toolbox or dual-display setup. The performance of LensM-
ouse is similar to the performance of the context window, a
popular technique for facilitating the reduction of mouse
travel. However, the context window has several limitations
making it less suitable in many scenarios. First, the context
window is transient and needs to be implicitly triggered by
the user through selection of some content, thus making it
unsuitable for hosting auxiliary windows that need frequent
interaction. Second, a context window may occlude sur-
rounding objects, causing the user to lose some of the in-
formation in the main workspace. For this reason, context
windows in current commercial systems such as MS Word
are often designed to be small and only contain the most
frequently used options. In comparison, LensMouse pro-
vides a persistent display with a reasonably large size, thus
minimizing these limitations, and with the added benefit of
direct-touch input and rapid access.

Prior to our study we speculated that the practical benefits
of LensMouse would be severely challenged by visual sepa-
ration. Our results reveal that the minimal (almost negligi-
ble) effect of visual separation is compensated by the ad-
vantages of direct touch on the LensMouse, and results in a
positive net gain in performance. However, we did not as-
sess the full impact of visual separation which may depend
on many factors, including the complexity of the informa-
tion shown on the LensMouse, the efforts of switching be-
tween tool palettes, and the number of eye gaze and head
movements required for certain tasks. Therefore, designers
should strike a balance between the need for showing rich
information content and minimizing the impact of visual
separation.

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2437

Additionally, the benefits of direct touch also outweigh the
potential cost of occluding the LensMouse display with the
palm of the hand. Note that in our task users were first re-
quired to click on the instruction button using the left
mouse button. This would result in partially occluding the
LensMouse display and consequently the palette. Despite
this concern, hand occlusion did not affect overall perform-
ance, nor did users report any frustration from this effect.

It is also worth noting that our prototype demonstrates the
essential features of LensMouse, but is ergonomically far
from perfect. Presently, the display could become partially
covered by the palm, requiring users to occasionally move
their hand to one side. However, this limitation can be eas-
ily alleviated through better ergonomic design. One possi-
ble solution is to place the display in a comfortable viewing
position (using a tiltable base) with left and right mouse
buttons placed on either side of the mouse (Figure 7 a). An-
other solution is to place the display and the buttons on dif-
ferent facets of the mouse (Figure 7 b). Such a configura-
tion would allow users to operate LensMouse like a normal
mouse, while still keeping users’ fingers close to its display.
Multi-touch input [39] could be performed easily using
thumb and index finger. Furthermore, a joystick-shape
LensMouse (Figure 7c) could allow users to operate the
touch screen using the thumb.

Direct touch input on the LensMouse affords a lower reso-
lution than that with relative cursor control. However, many
of the tasks on LensMouse do not require pixel-level opera-
tions. When such operation were required, techniques such
as Shift [40] could be employed to alleviate the fat-finger
problem,

Finally, the size of the display on LensMouse is relatively
small. This could limit the number of controls we can place
on this device and possibly make it difficult for applications
requiring larger windows. However, we could consider
supporting panning operation on LensMouse by using fin-
ger gestures to accommodate more content.

BEYOND AUXILIARY WINDOWS
In addition to resolving some of the challenges with auxil-
iary windows, LensMouse may serve many other purposes:

Custom screen ‘shortcut’. In addition to migrating prede-
fined auxiliary windows to LensMouse, the user may take a

‘snapshot’ of any rectangular region of the primary screen,
and create a local copy of the region on LensMouse, as in
WinCuts [38]. Any finger input on LensMouse is then
piped back to that screen region. By doing so, the user can
create a custom ‘shortcut’ to any portion of the screen, and
benefit from efficient access and direct input similar to that
shown in our experiment.

Preview lens. LensMouse can also serve as a means to pre-
view content associated with a UI object without commit-
ting a selection. Figure 8a shows a how such a preview lens
can be used to reveal the folder’s content on the LensMouse
by simply hovering over the folder icon. This could aid
search tasks where multiple folders have to be traversed
rapidly.

Figure 8 - Special lenses:(a) Previewing folder content. (b)
Seeing through overlapping windows.

See-through lens. Another use of the LensMouse is for see-
ing through screen objects [8], e.g. overlapping windows
(Figure 8b). Overlapping windows often result in window
management overhead spent in switching between them.
We implemented a see-through lens to allow users to see
“behind” overlapping windows. In our current implementa-
tion, users have access only to content that is directly be-
hind the active window. However, in future implementa-
tions the user will be able to flick their finger on the display
and thus iterate through the stack of overlapping screens.

Hybrid pointing. LensMouse integrates both direct-touch
input and conventional mouse cursor pointing. This offers a
unique style of hybrid pointing that we are keen to investi-
gate further. In one demonstrator, we have built a prototype
that shows a magnifying lens that amplifies the region
around the cursor (Figure 9a). The user can move the
LensMouse first to coarsely position the cursor near the
target, then use the finger to select the magnified target on
the LensMouse display. For farther away targets that are
cumbersome to reach, LensMouse shows an overview of

Figure 7 – Various possibilities for an ergonomic design of LensMouse. (a) a rotatable display allowing most freedom in view-
ing position; (b) having the display oriented toward the user, but limited by handedness; (c) on other devices such as a joystick

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2438

the whole workspace (Figure 9b). By touching the finger on
the overview, the user can directly land the cursor in the
proximity of the target, and then refine the cursor position
by moving LensMouse. By combining the absolute pointing
of touch with the relative pointing of the mouse in different
manners, there is the potential for new possibilities in selec-
tion and pointing.

Figure 9 - Absolute + Relative pointing. (a) For small targets,
and (b) to cover long distances.

Gestural interaction. With the addition of touch input, the
user can apply various finger gestures to interact with the
object under the cursor such as rotating and zooming. To
rotate, the user places the cursor upon the object to be spun,
then makes a circular finger motion on the mouse screen.
Similarly, users can zoom into a specific location by point-
ing the cursor in that region and sliding the finger on a soft
zoom control. The dual input capability (mouse and touch)
effectively eliminates the need for mode switch between
pointing and gesturing, as common in many other systems.
As multi-touch becomes more broadly available, we can
envisage more elaborate touch gestures being supported.

Private notification. Notifications of incoming emails or
instant messages are sometimes distracting and may poten-
tially reveal private information to others, especially when a
system is connected to a public display (i.e. during a pres-
entation) [17]. By setting LensMouse into private mode,
messages that would normally appear on-screen will be
diverted to the private mouse display. While not imple-
mented in our current prototype, users could use simple,
pre-configured gestures on the mouse screen to make rapid
responses, such as “I am busy” [6].

Custom controller. LensMouse can support numerous types
of custom controls including soft buttons, sliders, pads, etc.
For example, to navigate web pages, we provide forward
and back buttons, and to browse a long page we imple-
mented a multi-speed scroll-bar. As a custom controller,
LensMouse can provide any number of controls that can fit
on the display for a given application. In future work, our
implementation will include the ability to automatically
open a set of user-configured custom controls for a given
application. For instance, upon opening a map-based appli-
cation, the LensMouse could provide different lenses for
pan+zoom controls, overviews, or other relevant controls.

Fluid annotation. Annotating documents while reading can
be cumbersome in a conventional desktop setup due to the
separate actions of selecting the point of interest with the
mouse and then typing on the keyboard [27]. LensMouse
could support simple annotations (such as basic shapes) in a

more fluid way. Users can move the mouse over the content
of interest, and annotate with their fingertips.

CONCLUSION
In this paper, we presented LensMouse, a novel device that
serves as auxiliary display – or lens – for interacting with
desktop computers. We demonstrated some key benefits of
LensMouse (e.g. reducing mouse travel, minimizing win-
dow management, reducing occlusion, and minimizing
workspace “distortions”), as well as resolving some of the
challenges with auxiliary windows on desktops. A con-
trolled user experiment reveals a positive net gain in per-
formance of LensMouse over certain common alternatives.
Subjective user preference confirms our quantitative results
showing that LensMouse is a welcome addition to the suite
of techniques for augmenting the mouse.

Additionally, we demonstrated the utility of LensMouse
through various applications, including preview and see-
through lenses, gestural interaction, and so on. Future work
will focus on improving the hardware design, especially its
ergonomics. We also plan to carry out several studies to
evaluate the performance of LensMouse in various display
environments including wall-size displays and tabletop dis-
plays. Finally, we will also explore diverse usage contexts
of LensMouse, such as in multi-user environments.

REFERENCES
1. Ashdown, M., Oka, K., Sato, Y. (2005). Combining

head tracking and mouse input for a GUI on multiple
monitors. CHI Extended Abstracts, 1188-1191.

2. Asano, T., Sharlin, E., Kitamura, Y., Takashima, K., and
Kishino, F. (2005). Predictive Interaction Using the
Delphian desktop. UIST, 133-141.

3. Benko, H. and Feiner, S. (2005). Multi-Monitor Mouse.
CHI Extended Abstracts, 1208-1211.

4. Baudisch, P., Cutrell, E., Hinckley, K., and Gruen, R.
(2004). Mouse Ether: Accelerating the Acquisition of
Targets Across Multi-Monitor Displays. CHI, 1379-
1382.

5. Baudisch, P. and Gutwin, C. (2004). Multiblending:
displaying overlapping windows simultaneously without
the drawbacks of alpha blending. CHI, 367-374.

6. Balakrishnan, R. and Patel, P. (1998). The PadMouse:
Facili-tating selection and spatial positioning for the
non-dominant hand. CHI, 9-16.

7. Bi, X. and Balakrishnan, R. (2009). Comparing Usage
of a Large High-Resolution Display to Single or Dual
Desktop Displays for Daily Work. CHI, 1005-1014.

8. Bier, E.A., Stone, C.M., Pier, M, Buxton, W., and De-
Rose, T.D. (1993). Toolglass and Magic Lenses: The
See-Through Interface. SIGGRAPH, 73-80.

9. Cechanowicz, J., Irani, P., Subramanian, S. (2007).
Augmenting the mouse with pressure sensitive input.
CHI, 1385-1394

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2439

10. Chen, N., Guimbretière, F., Dixon, M., Lewis, C., and
Agrawala, M. (2008). Navigation Techniques for Dual-
Display E-Book Readers. CHI, 1779-1788.

11. Dickie, C., Hart, J., Vertegaal, R., and Eiser, A. (2006).
LookPoint: an evaluation of eye input for hands-free
switching of input devices between multiple computers.
OZCHI, 119-126.

12. Grudin, J., (2001). Partitioning digital worlds: focal and
peripheral awareness in multiple monitor use. CHI, 458-
465.

13. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M.
(2004). Object pointing: a complement to bitmap point-
ing in GUIs. GI, 9-16.

14. Hutchings, D. R., Smith, G., Meyers, B., Czerwinski,
M., Robertson, G. (2004). Display space usage and win-
dow management operation comparisons between single
monitor and multiple monitor users. AVI, 32-39.

15. Hutchings, D.R. and Stasko, J. (2005). mudibo: Multi-
pledialog boxes for multiple monitors. CHI Extended
Abstracts, 1471-1474.

16. Hutchings, D.R. and Stasko, J. (2007). Consistency,
Multiple Monitors, and Multiple Windows. CHI Ex-
tended Abstracts, 211-214.

17. Hutchings, H.M. and Pierce, J.S. (2006). Understanding
the whethers, hows, and whys of divisible interfaces.
AVI, 274-277.

18. Hornbæk, K., Bederson, B. B., and Plaisant, C. (2002).
Navi-gation patterns and usability of zoomable user in-
terfaces with and without an overview. TOHCI, 9(4),
362–389.

19. Hinckley, K., Sinclair, M., Hanson, E., Szeliski, R., and
Con-way, M. (1999). The VideoMouse: a camera-based
multi-degree-of-freedom input device. UIST, 103-112.

20. Hinckley, K., Cutrell, E., Bathiche, S., and Muss, T.
(2002). Quantitative analysis of scrolling techniques.
CHI, 65-72.

21. Hinckley, K., Dixon, M., Sarin, R., Guimbretiere, F.,
and Balakrishnan, R. (2009). Codex: a dual screen tablet
computer. CHI, 1933-1942.

22. Ishak, E. W., Feiner, S. K. (2004). Interacting with hid-
den content using content-aware free-space transpar-
ency. UIST, 189-192.

23. Kobayashi, M. and Igarashi, T. (2008). Ninja Cursors:
Using Multiple Cursors to Assist Target Acquisition on
Large Screens. CHI, 949-958.

24. Kang, Y. and Stasko, J. (2008) Lightweight
Task/Application Performance using Single versus Mul-
tiple Monitors: A Comparative Study. GI, 17-24.

25. Myers, B. A., Miller, R. C., Bostwick, B., and Evank-
ovich, C. (2000). Extending the windows desktop inter-
face with con-nected handheld computers. 4th USENIX
Windows Systems Symposium, 79-88.

26. McGuffin, M. and Balakrishnan, R. (2002). Acquisition
of expanding targets. CHI, 57-64.

27. Morris, M.R., Brush, A.J.B., and Meyers, B. (2007).
Reading Revisited: Evaluating the Usability of Digital
Display Surfaces for Active Reading Tasks. Tabletop,
79-86.

28. MacKenzie, S. (1992). Fitts’ law as a research and de-
sign tool in human-computer interaction. Human-
Computer Interaction 7(1): 91–139.

29. Nacenta, M., Mandryk, R., Gutwin, C. (2008). Targeting
Across Displayless Space. CHI, 777-786.

30. Plaisant, C., Carr, D., and Shneiderman, B. (1995). Im-
age-browser taxonomy and guidelines for designers.
IEEE Soft-ware, 12(2), 21–32.

31. Pietriga, E., Appert, C., and Beaudouin-Lafon, M.
(2007). Pointing and Beyond: an Operationalization and
Preliminary Evaluation of Multi-scale Searching. CHI,
1215–1224.

32. Parhi, P., Karlson, A., and Bederson, B. (2006). Target
size study for one-handed thumb use on small touch
screen devices. MobileHCI, 203-210.

33. Ramos, G., Cockburn, A., Beaudouin-Lafon, M. and
Balakrishnan, R. (2007). Pointing Lenses: Facilitating
Stylus Input throughVisual- and Motor-Space Magnifi-
cation, CHI, 757-766.

34. Ringel, M. (2003). When One Isn’t Enough: An Analy-
sis of Virtual Desktop Usage Strategies and Their Impli-
cations for Design. CHI Extended Abstracts, 762-763.

35. Shi, K., Irani, P, and Subramanian, S. (2009). Pressure-
Move: Pressure Input with Mouse Movement,
INTERACT, 25-39.

36. St. John, M., Harris, W., and Osga, G. A. (1997). De-
signing for multitasking environments: Multiple moni-
tors versus multiple windows. HFES, 1313-1317.

37. Tan, D.S. and Czerwinski, Mary (2003). Effects of Vis-
ual Separation and Physical Discontinuities when Dis-
tributing Information across Multiple Displays.
INTERACT, 252-260.

38. Tan, D.S., Meyers, B., and Czerwinski, M. (2004).
WinCuts: Manipulating Arbitrary Window Regions for
More Effective Use of Screen Space. CHI EA, 1525-
1528.

39. Villar, N., Izadi, S., Rosenfeld, D., Benko, H., Helmes,
J., Westhues, J., Hodges, S., Butler, A., Ofek, E., Cao,
X., and Chen, B. (2009). Mouse 2.0: Multi-touch Meets
the Mouse. UIST, 33-42.

40. Vogel, D. and Baudisch, P. (2007). Shift: A Technique
for Operating Pen-Based Interfaces Using Touch. CHI,
657-666.

41. Ware, C. and Lewis, M. (1995). The DragMag image
magni-fier. CHI, 407-408.

CHI 2010: Displays Where You Least Expect Them April 10–15, 2010, Atlanta, GA, USA

2440

